Lesson 19: Introduction to Pandas

(c) 2018 Justin Bois. With the exception of pasted graphics, where the source is noted, this work is licensed under a Creative Commons Attribution License CC-BY 4.0. All code contained herein is licensed under an MIT license.

This document was prepared at Caltech with financial support from the Donna and Benjamin M. Rosen Bioengineering Center.

This lesson was generated from a Jupyter notebook. You can download the notebook here.



In [1]:
import numpy as np

# Pandas, conventionally imported as pd
import pandas as pd

Throughout your research career, you will undoubtedly need to handle data, possibly lots of data. The data comes in lots of formats, and you will spend much of your time wrangling the data to get it into a usable form.

Pandas is the primary tool in the SciPy stack for handling data. Its primary object, the DataFrame is extremely useful in wrangling data. We will explore some of that functionality here, and will put it to use in the next lesson.

The data set

We will explore using Pandas with a real data set. We will use a data set published in Beattie, et al., Perceptual impairment in face identification with poor sleep, Royal Society Open Science, 3, 160321, 2016. In this paper, researchers used the Glasgow Factial Matching Test (GMFT) to investigate how sleep deprivation affects a subject's ability to match faces, as well as the confidence the subject has in those matches. Briefly, the test works by having subjects look at a pair of faces. Two such pairs are shown below.

gfmt_faces.png

The top two pictures are the same person, the bottom two pictures are different people. For each pair of faces, the subject gets as much time as he or she needs and then says whether or not they are the same person. The subject then rates his or her confidence in the choice.

In this study, subjects also took surveys to determine properties about their sleep. The Sleep Condition Indicator (SCI) is a measure of insomnia disorder over the past month (scores of 16 and below indicate insomnia). The Pittsburgh Sleep Quality Index (PSQI) quantifies how well a subject sleeps in terms of interruptions, latency, etc. A higher score indicates poorer sleep. The Epworth Sleepiness Scale (ESS) assesses daytime drowsiness.

The data set is stored in the file ~/git/bootcamp/data/gfmt_sleep.csv. The contents of this file were adapted from the Excel file posted on the public Dryad repository. (Note this: if you want other people to use and explore your data, make it publicly available.)

This is a CSV file, where CSV stands for comma-separated value. This is a text file that is easily read into data structures in many programming languages. You should generally always store your data in such a format, not necessarily CSV, but a format that is open, has a well-defined specification, and is readable in many contexts. Excel files do not meet these criteria. Neither to .mat files.

Let's take a look at the CSV file.

In [2]:
!head data/gfmt_sleep.csv
participant number,gender,age,correct hit percentage,correct reject percentage,percent correct,confidence when correct hit,confidence incorrect hit,confidence correct reject,confidence incorrect reject,confidence when correct,confidence when incorrect,sci,psqi,ess
8,f,39,65,80,72.5,91,90,93,83.5,93,90,9,13,2
16,m,42,90,90,90,75.5,55.5,70.5,50,75,50,4,11,7
18,f,31,90,95,92.5,89.5,90,86,81,89,88,10,9,3
22,f,35,100,75,87.5,89.5,*,71,80,88,80,13,8,20
27,f,74,60,65,62.5,68.5,49,61,49,65,49,13,9,12
28,f,61,80,20,50,71,63,31,72.5,64.5,70.5,15,14,2
30,m,32,90,75,82.5,67,56.5,66,65,66,64,16,9,3
33,m,62,45,90,67.5,54,37,65,81.5,62,61,14,9,9
34,f,33,80,100,90,70.5,76.5,64.5,*,68,76.5,14,12,10

The first line contains the headers for each column. They are participant number, gender, age, etc. The data follow. There are two important things to note here. First, notice that the gender column has string data (m or f), while the rest of the data are numeric. Note also that there are some missing data, denoted by the *s in the file.

Given the file I/O skills you recently learned, you could write some functions to parse this file and extra the data you want. You can imagine that this might be kind of painful. However, if the file format is nice and clean, like we more or less have here, we can use pre-built tools. Pandas has a very powerful function, pd.read_csv() that can read in a CSV file and store the contents in a convenient data structure called a DataFrame.

Reading in data

Let's first look at the doc string of pd.read_csv().

In [3]:
pd.read_csv?
Signature: pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)
Docstring:
Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file
into chunks.

Additional help can be found in the `online docs for IO Tools
<http://pandas.pydata.org/pandas-docs/stable/io.html>`_.

Parameters
----------
filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any \
object with a read() method (such as a file handle or StringIO)
    The string could be a URL. Valid URL schemes include http, ftp, s3, and
    file. For file URLs, a host is expected. For instance, a local file could
    be file://localhost/path/to/table.csv
sep : str, default ','
    Delimiter to use. If sep is None, the C engine cannot automatically detect
    the separator, but the Python parsing engine can, meaning the latter will
    be used and automatically detect the separator by Python's builtin sniffer
    tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
    different from ``'\s+'`` will be interpreted as regular expressions and
    will also force the use of the Python parsing engine. Note that regex
    delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``
delimiter : str, default ``None``
    Alternative argument name for sep.
delim_whitespace : boolean, default False
    Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
    used as the sep. Equivalent to setting ``sep='\s+'``. If this option
    is set to True, nothing should be passed in for the ``delimiter``
    parameter.

    .. versionadded:: 0.18.1 support for the Python parser.

header : int or list of ints, default 'infer'
    Row number(s) to use as the column names, and the start of the
    data.  Default behavior is to infer the column names: if no names
    are passed the behavior is identical to ``header=0`` and column
    names are inferred from the first line of the file, if column
    names are passed explicitly then the behavior is identical to
    ``header=None``. Explicitly pass ``header=0`` to be able to
    replace existing names. The header can be a list of integers that
    specify row locations for a multi-index on the columns
    e.g. [0,1,3]. Intervening rows that are not specified will be
    skipped (e.g. 2 in this example is skipped). Note that this
    parameter ignores commented lines and empty lines if
    ``skip_blank_lines=True``, so header=0 denotes the first line of
    data rather than the first line of the file.
names : array-like, default None
    List of column names to use. If file contains no header row, then you
    should explicitly pass header=None. Duplicates in this list will cause
    a ``UserWarning`` to be issued.
index_col : int or sequence or False, default None
    Column to use as the row labels of the DataFrame. If a sequence is given, a
    MultiIndex is used. If you have a malformed file with delimiters at the end
    of each line, you might consider index_col=False to force pandas to _not_
    use the first column as the index (row names)
usecols : list-like or callable, default None
    Return a subset of the columns. If list-like, all elements must either
    be positional (i.e. integer indices into the document columns) or strings
    that correspond to column names provided either by the user in `names` or
    inferred from the document header row(s). For example, a valid list-like
    `usecols` parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element
    order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
    To instantiate a DataFrame from ``data`` with element order preserved use
    ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
    in ``['foo', 'bar']`` order or
    ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
    for ``['bar', 'foo']`` order.

    If callable, the callable function will be evaluated against the column
    names, returning names where the callable function evaluates to True. An
    example of a valid callable argument would be ``lambda x: x.upper() in
    ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
    parsing time and lower memory usage.
squeeze : boolean, default False
    If the parsed data only contains one column then return a Series
prefix : str, default None
    Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...
mangle_dupe_cols : boolean, default True
    Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
    'X'...'X'. Passing in False will cause data to be overwritten if there
    are duplicate names in the columns.
dtype : Type name or dict of column -> type, default None
    Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
    Use `str` or `object` together with suitable `na_values` settings
    to preserve and not interpret dtype.
    If converters are specified, they will be applied INSTEAD
    of dtype conversion.
engine : {'c', 'python'}, optional
    Parser engine to use. The C engine is faster while the python engine is
    currently more feature-complete.
converters : dict, default None
    Dict of functions for converting values in certain columns. Keys can either
    be integers or column labels
true_values : list, default None
    Values to consider as True
false_values : list, default None
    Values to consider as False
skipinitialspace : boolean, default False
    Skip spaces after delimiter.
skiprows : list-like or integer or callable, default None
    Line numbers to skip (0-indexed) or number of lines to skip (int)
    at the start of the file.

    If callable, the callable function will be evaluated against the row
    indices, returning True if the row should be skipped and False otherwise.
    An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
    Number of lines at bottom of file to skip (Unsupported with engine='c')
nrows : int, default None
    Number of rows of file to read. Useful for reading pieces of large files
na_values : scalar, str, list-like, or dict, default None
    Additional strings to recognize as NA/NaN. If dict passed, specific
    per-column NA values.  By default the following values are interpreted as
    NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
    '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan',
    'null'.
keep_default_na : bool, default True
    Whether or not to include the default NaN values when parsing the data.
    Depending on whether `na_values` is passed in, the behavior is as follows:

    * If `keep_default_na` is True, and `na_values` are specified, `na_values`
      is appended to the default NaN values used for parsing.
    * If `keep_default_na` is True, and `na_values` are not specified, only
      the default NaN values are used for parsing.
    * If `keep_default_na` is False, and `na_values` are specified, only
      the NaN values specified `na_values` are used for parsing.
    * If `keep_default_na` is False, and `na_values` are not specified, no
      strings will be parsed as NaN.

    Note that if `na_filter` is passed in as False, the `keep_default_na` and
    `na_values` parameters will be ignored.
na_filter : boolean, default True
    Detect missing value markers (empty strings and the value of na_values). In
    data without any NAs, passing na_filter=False can improve the performance
    of reading a large file
verbose : boolean, default False
    Indicate number of NA values placed in non-numeric columns
skip_blank_lines : boolean, default True
    If True, skip over blank lines rather than interpreting as NaN values
parse_dates : boolean or list of ints or names or list of lists or dict, default False

    * boolean. If True -> try parsing the index.
    * list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
      each as a separate date column.
    * list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as
      a single date column.
    * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result
      'foo'

    If a column or index contains an unparseable date, the entire column or
    index will be returned unaltered as an object data type. For non-standard
    datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``

    Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : boolean, default False
    If True and `parse_dates` is enabled, pandas will attempt to infer the
    format of the datetime strings in the columns, and if it can be inferred,
    switch to a faster method of parsing them. In some cases this can increase
    the parsing speed by 5-10x.
keep_date_col : boolean, default False
    If True and `parse_dates` specifies combining multiple columns then
    keep the original columns.
date_parser : function, default None
    Function to use for converting a sequence of string columns to an array of
    datetime instances. The default uses ``dateutil.parser.parser`` to do the
    conversion. Pandas will try to call `date_parser` in three different ways,
    advancing to the next if an exception occurs: 1) Pass one or more arrays
    (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
    string values from the columns defined by `parse_dates` into a single array
    and pass that; and 3) call `date_parser` once for each row using one or
    more strings (corresponding to the columns defined by `parse_dates`) as
    arguments.
dayfirst : boolean, default False
    DD/MM format dates, international and European format
iterator : boolean, default False
    Return TextFileReader object for iteration or getting chunks with
    ``get_chunk()``.
chunksize : int, default None
    Return TextFileReader object for iteration.
    See the `IO Tools docs
    <http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
    for more information on ``iterator`` and ``chunksize``.
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
    For on-the-fly decompression of on-disk data. If 'infer' and
    `filepath_or_buffer` is path-like, then detect compression from the
    following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
    decompression). If using 'zip', the ZIP file must contain only one data
    file to be read in. Set to None for no decompression.

    .. versionadded:: 0.18.1 support for 'zip' and 'xz' compression.

thousands : str, default None
    Thousands separator
decimal : str, default '.'
    Character to recognize as decimal point (e.g. use ',' for European data).
float_precision : string, default None
    Specifies which converter the C engine should use for floating-point
    values. The options are `None` for the ordinary converter,
    `high` for the high-precision converter, and `round_trip` for the
    round-trip converter.
lineterminator : str (length 1), default None
    Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
    The character used to denote the start and end of a quoted item. Quoted
    items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
    Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
    QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : boolean, default ``True``
   When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
   whether or not to interpret two consecutive quotechar elements INSIDE a
   field as a single ``quotechar`` element.
escapechar : str (length 1), default None
    One-character string used to escape delimiter when quoting is QUOTE_NONE.
comment : str, default None
    Indicates remainder of line should not be parsed. If found at the beginning
    of a line, the line will be ignored altogether. This parameter must be a
    single character. Like empty lines (as long as ``skip_blank_lines=True``),
    fully commented lines are ignored by the parameter `header` but not by
    `skiprows`. For example, if ``comment='#'``, parsing
    ``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
    treated as the header.
encoding : str, default None
    Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
    standard encodings
    <https://docs.python.org/3/library/codecs.html#standard-encodings>`_
dialect : str or csv.Dialect instance, default None
    If provided, this parameter will override values (default or not) for the
    following parameters: `delimiter`, `doublequote`, `escapechar`,
    `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
    override values, a ParserWarning will be issued. See csv.Dialect
    documentation for more details.
tupleize_cols : boolean, default False
    .. deprecated:: 0.21.0
       This argument will be removed and will always convert to MultiIndex

    Leave a list of tuples on columns as is (default is to convert to
    a MultiIndex on the columns)
error_bad_lines : boolean, default True
    Lines with too many fields (e.g. a csv line with too many commas) will by
    default cause an exception to be raised, and no DataFrame will be returned.
    If False, then these "bad lines" will dropped from the DataFrame that is
    returned.
warn_bad_lines : boolean, default True
    If error_bad_lines is False, and warn_bad_lines is True, a warning for each
    "bad line" will be output.
low_memory : boolean, default True
    Internally process the file in chunks, resulting in lower memory use
    while parsing, but possibly mixed type inference.  To ensure no mixed
    types either set False, or specify the type with the `dtype` parameter.
    Note that the entire file is read into a single DataFrame regardless,
    use the `chunksize` or `iterator` parameter to return the data in chunks.
    (Only valid with C parser)
memory_map : boolean, default False
    If a filepath is provided for `filepath_or_buffer`, map the file object
    directly onto memory and access the data directly from there. Using this
    option can improve performance because there is no longer any I/O overhead.

Returns
-------
result : DataFrame or TextParser
File:      ~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py
Type:      function

Holy cow! There are so many options we can specify for reading in a CSV file. You will likely find reasons to use many of these throughout your research. For this particular data set, we really only need the na_values kwarg. This specifies what characters signify that a data point is missing. The resulting DataFrame is populated with a NaN, or not-a-number, wherever this character is present in the file. In this case, we want na_values='*'. So, let's load in the data set.

In [4]:
df = pd.read_csv('data/gfmt_sleep.csv', na_values='*')

# Check the type
type(df)
Out[4]:
pandas.core.frame.DataFrame

We now have the data stored in a DataFrame. We can look at it in the Jupyter notebook.

In [5]:
df
Out[5]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
0 8 f 39 65 80 72.5 91.0 90.0 93.0 83.5 93.0 90.0 9 13 2
1 16 m 42 90 90 90.0 75.5 55.5 70.5 50.0 75.0 50.0 4 11 7
2 18 f 31 90 95 92.5 89.5 90.0 86.0 81.0 89.0 88.0 10 9 3
3 22 f 35 100 75 87.5 89.5 NaN 71.0 80.0 88.0 80.0 13 8 20
4 27 f 74 60 65 62.5 68.5 49.0 61.0 49.0 65.0 49.0 13 9 12
5 28 f 61 80 20 50.0 71.0 63.0 31.0 72.5 64.5 70.5 15 14 2
6 30 m 32 90 75 82.5 67.0 56.5 66.0 65.0 66.0 64.0 16 9 3
7 33 m 62 45 90 67.5 54.0 37.0 65.0 81.5 62.0 61.0 14 9 9
8 34 f 33 80 100 90.0 70.5 76.5 64.5 NaN 68.0 76.5 14 12 10
9 35 f 53 100 50 75.0 74.5 NaN 60.5 65.0 71.0 65.0 14 8 7
10 38 f 41 70 55 62.5 82.0 61.5 73.0 69.0 82.0 64.0 14 5 19
11 41 f 36 90 100 95.0 76.5 75.5 75.0 NaN 76.0 75.5 15 7 0
12 46 f 40 95 65 80.0 80.0 89.0 79.0 58.5 79.5 63.0 10 12 8
13 49 f 24 85 75 80.0 58.0 50.0 49.0 68.0 55.0 59.0 14 13 4
14 55 f 32 75 55 65.0 85.0 81.0 85.0 86.0 85.0 83.5 5 13 7
15 71 f 40 40 100 70.0 69.0 56.0 70.0 NaN 70.0 56.0 0 11 14
16 76 f 61 100 40 70.0 69.5 NaN 44.5 73.0 54.5 73.0 16 4 12
17 77 f 42 70 90 80.0 87.0 72.0 90.5 43.5 88.5 64.0 11 10 10
18 78 m 31 100 70 85.0 92.0 NaN 81.0 60.0 87.5 60.0 14 6 11
19 80 m 28 100 50 75.0 100.0 NaN 100.0 100.0 100.0 100.0 12 7 12
20 89 f 26 60 80 70.0 70.0 77.0 82.0 67.5 77.0 70.5 14 8 1
21 90 m 45 100 95 97.5 100.0 NaN 100.0 100.0 100.0 100.0 14 9 6
22 93 f 28 100 75 87.5 89.5 NaN 67.0 60.0 80.0 60.0 16 7 4
23 100 f 44 65 25 45.0 62.0 72.0 87.0 77.0 69.5 73.5 1 15 6
24 101 f 28 100 40 70.0 87.0 NaN 68.0 54.0 81.0 54.0 14 7 2
25 1 f 42 80 65 72.5 51.5 44.5 43.0 49.0 51.0 49.0 29 1 5
26 2 f 45 80 90 85.0 75.0 55.5 80.0 75.0 78.5 67.0 19 5 1
27 3 f 16 70 80 75.0 70.0 57.0 54.0 53.0 57.0 54.5 23 1 3
28 4 f 21 70 65 67.5 63.5 64.0 50.0 50.0 60.0 50.0 26 5 4
29 5 f 18 90 100 95.0 76.5 83.0 80.0 NaN 80.0 83.0 21 7 5
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
72 64 f 69 95 80 87.5 80.0 65.0 78.5 70.5 80.0 70.0 31 1 1
73 65 f 31 100 95 97.5 98.0 NaN 90.0 40.0 92.0 40.0 27 4 4
74 66 f 44 90 95 92.5 87.0 47.5 69.0 87.0 83.0 67.0 32 1 2
75 67 f 25 100 100 100.0 61.5 NaN 58.5 NaN 60.5 NaN 28 8 9
76 68 f 45 70 50 60.0 80.5 51.5 63.0 69.0 72.5 61.5 25 4 1
77 69 f 47 90 100 95.0 100.0 NaN 71.5 83.0 97.5 83.0 30 2 2
78 70 f 33 85 70 77.5 70.0 38.0 58.5 65.0 68.0 40.0 21 7 12
79 72 f 18 80 75 77.5 67.5 51.5 66.0 57.0 67.0 53.0 29 4 6
80 73 f 74 85 80 82.5 66.0 55.0 63.0 50.5 65.0 55.0 20 1 5
81 74 m 21 40 40 40.0 90.5 80.0 74.5 83.0 82.0 81.0 22 7 5
82 75 f 45 80 95 87.5 74.0 67.0 76.0 17.0 75.0 64.0 23 4 4
83 79 f 37 90 80 85.0 95.5 68.0 83.5 83.0 94.0 71.0 20 5 9
84 81 m 41 90 85 87.5 80.0 59.5 70.0 41.0 77.0 59.0 17 6 3
85 82 f 41 80 75 77.5 94.5 61.5 86.0 74.0 92.0 67.0 27 4 8
86 83 f 34 90 35 62.5 81.0 52.0 71.0 58.0 81.0 58.0 27 2 6
87 84 f 39 75 70 72.5 57.0 57.0 59.5 50.0 58.0 50.0 22 3 10
88 85 f 18 85 85 85.0 93.0 92.0 91.0 89.0 91.5 91.0 25 4 21
89 86 f 31 100 85 92.5 100.0 NaN 100.0 50.0 100.0 50.0 30 3 5
90 87 m 26 95 75 85.0 85.0 88.0 82.0 82.0 85.0 85.0 32 1 5
91 88 m 66 60 85 72.5 67.5 66.0 74.0 57.0 74.0 64.0 30 5 9
92 91 m 62 100 80 90.0 81.0 NaN 74.5 82.0 79.5 82.0 32 2 1
93 92 m 22 85 95 90.0 66.0 56.0 72.0 63.0 70.5 59.5 28 1 8
94 94 f 41 35 75 55.0 55.0 61.0 80.0 57.0 72.0 60.0 31 1 11
95 95 m 46 95 80 87.5 90.0 75.0 80.0 80.0 85.0 75.0 29 3 5
96 96 f 56 70 50 60.0 63.0 52.5 67.5 65.5 64.0 59.5 26 6 7
97 97 f 23 70 85 77.5 77.0 66.5 77.0 77.5 77.0 74.0 20 8 10
98 98 f 70 90 85 87.5 65.5 85.5 87.0 80.0 74.0 80.0 19 8 7
99 99 f 24 70 80 75.0 61.5 81.0 70.0 61.0 65.0 81.0 31 2 15
100 102 f 40 75 65 70.0 53.0 37.0 84.0 52.0 81.0 51.0 22 4 7
101 103 f 33 85 40 62.5 80.0 27.0 31.0 82.5 81.0 73.0 24 5 7

102 rows × 15 columns

This is a nice representation of the data, but we really do not need to display that much. Instead, we can use the head() method of DataFrames to look at the first few rows.

In [6]:
df.head()
Out[6]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
0 8 f 39 65 80 72.5 91.0 90.0 93.0 83.5 93.0 90.0 9 13 2
1 16 m 42 90 90 90.0 75.5 55.5 70.5 50.0 75.0 50.0 4 11 7
2 18 f 31 90 95 92.5 89.5 90.0 86.0 81.0 89.0 88.0 10 9 3
3 22 f 35 100 75 87.5 89.5 NaN 71.0 80.0 88.0 80.0 13 8 20
4 27 f 74 60 65 62.5 68.5 49.0 61.0 49.0 65.0 49.0 13 9 12

This is more manageable and gives us an overview of what the columns are. Note also the the missing data was populated with NaN.

Indexing data frames

The DataFrame is a convenient data structure for many reasons that will become clear as we start exploring. Let's start by looking at how DataFrames are indexed. Let's try to look at the first row.

In [7]:
df[0]
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   3062             try:
-> 3063                 return self._engine.get_loc(key)
   3064             except KeyError:

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 0

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-7-ad11118bc8f3> in <module>()
----> 1 df[0]

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
   2683             return self._getitem_multilevel(key)
   2684         else:
-> 2685             return self._getitem_column(key)
   2686 
   2687     def _getitem_column(self, key):

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_column(self, key)
   2690         # get column
   2691         if self.columns.is_unique:
-> 2692             return self._get_item_cache(key)
   2693 
   2694         # duplicate columns & possible reduce dimensionality

~/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py in _get_item_cache(self, item)
   2484         res = cache.get(item)
   2485         if res is None:
-> 2486             values = self._data.get(item)
   2487             res = self._box_item_values(item, values)
   2488             cache[item] = res

~/anaconda3/lib/python3.6/site-packages/pandas/core/internals.py in get(self, item, fastpath)
   4113 
   4114             if not isna(item):
-> 4115                 loc = self.items.get_loc(item)
   4116             else:
   4117                 indexer = np.arange(len(self.items))[isna(self.items)]

~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   3063                 return self._engine.get_loc(key)
   3064             except KeyError:
-> 3065                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   3066 
   3067         indexer = self.get_indexer([key], method=method, tolerance=tolerance)

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 0

Yikes! Lots of errors. The problem is that we tried to index numerically by row. We index DataFrames, by columns. And there is no column that has the name 0, though there could be. Instead, a might want to look at the column with the percentage of correct face matching tasks.

In [8]:
df['percent correct']
Out[8]:
0       72.5
1       90.0
2       92.5
3       87.5
4       62.5
5       50.0
6       82.5
7       67.5
8       90.0
9       75.0
10      62.5
11      95.0
12      80.0
13      80.0
14      65.0
15      70.0
16      70.0
17      80.0
18      85.0
19      75.0
20      70.0
21      97.5
22      87.5
23      45.0
24      70.0
25      72.5
26      85.0
27      75.0
28      67.5
29      95.0
       ...  
72      87.5
73      97.5
74      92.5
75     100.0
76      60.0
77      95.0
78      77.5
79      77.5
80      82.5
81      40.0
82      87.5
83      85.0
84      87.5
85      77.5
86      62.5
87      72.5
88      85.0
89      92.5
90      85.0
91      72.5
92      90.0
93      90.0
94      55.0
95      87.5
96      60.0
97      77.5
98      87.5
99      75.0
100     70.0
101     62.5
Name: percent correct, Length: 102, dtype: float64

This gave us the numbers we were after. Notice that when it was printed, the index of the rows came along with it. If we wanted to pull out a single percentage correct, say corresponding to index 4, we can do that.

In [9]:
df['percent correct'][4]
Out[9]:
62.5

However, this is not the preferred way to do this. It is better to use .loc. This give the location in the DataFrame we want.

In [10]:
df.loc[4, 'percent correct']
Out[10]:
62.5

It is also important to note that row indices need not be integers. And you should not count on them being integers. In practice I almost never use row indices, but rather use Boolean indexing.

Boolean indexing of data frames

Let's say I wanted the percent correct of participant number 42. I can use Boolean indexing to specify the row. Specifically, I want the row for which df['participant number'] == 42. You can essentially plop this syntax directly when using .loc.

In [11]:
df.loc[df['participant number'] == 42, 'percent correct']
Out[11]:
54    85.0
Name: percent correct, dtype: float64

If I want to pull the whole record for that participant, I can use : for the column index.

In [12]:
df.loc[df['participant number'] == 42, :]
Out[12]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
54 42 m 29 100 70 85.0 75.0 NaN 64.5 43.0 74.0 43.0 32 1 6

Notice that the index, 54, comes along for the ride, but we do not need it.

Now, let's pull out all records of females under the age of 21. We can again use Boolean indexing, but we need to use an & operator. We did not cover this bitwise operator before, but the syntax is self-explanatory in the below. Note that it is important that each Boolean operation you are doing is in parentheses.

In [13]:
df.loc[(df['age'] < 21) & (df['gender'] == 'f'), :]
Out[13]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
27 3 f 16 70 80 75.0 70.0 57.0 54.0 53.0 57.0 54.5 23 1 3
29 5 f 18 90 100 95.0 76.5 83.0 80.0 NaN 80.0 83.0 21 7 5
66 58 f 16 85 85 85.0 55.0 30.0 50.0 40.0 52.5 35.0 29 2 11
79 72 f 18 80 75 77.5 67.5 51.5 66.0 57.0 67.0 53.0 29 4 6
88 85 f 18 85 85 85.0 93.0 92.0 91.0 89.0 91.5 91.0 25 4 21

We can do something even more complicated, like pull out all females under 30 who got more than 85% of the face matching tasks correct. The code is clearer if we set up our Boolean indexing first, as follows.

In [14]:
inds = (df['age'] < 30) & (df['gender'] == 'f') & (df['percent correct'] > 85)

# Take a look
inds
Out[14]:
0      False
1      False
2      False
3      False
4      False
5      False
6      False
7      False
8      False
9      False
10     False
11     False
12     False
13     False
14     False
15     False
16     False
17     False
18     False
19     False
20     False
21     False
22      True
23     False
24     False
25     False
26     False
27     False
28     False
29      True
       ...  
72     False
73     False
74     False
75      True
76     False
77     False
78     False
79     False
80     False
81     False
82     False
83     False
84     False
85     False
86     False
87     False
88     False
89     False
90     False
91     False
92     False
93     False
94     False
95     False
96     False
97     False
98     False
99     False
100    False
101    False
Length: 102, dtype: bool

Notice that inds is an array (actually a Pandas Series, a essentially a DataFrame with one column) of Trues and Falses. When we index with it using .loc, we get back rows where inds is True.

In [15]:
df.loc[inds, :]
Out[15]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
22 93 f 28 100 75 87.5 89.5 NaN 67.0 60.0 80.0 60.0 16 7 4
29 5 f 18 90 100 95.0 76.5 83.0 80.0 NaN 80.0 83.0 21 7 5
30 6 f 28 95 80 87.5 100.0 85.0 94.0 61.0 99.0 65.0 19 7 12
33 10 f 25 100 100 100.0 90.0 NaN 85.0 NaN 90.0 NaN 17 10 11
56 44 f 21 85 90 87.5 66.0 29.0 70.0 29.0 67.0 29.0 26 7 18
58 48 f 23 90 85 87.5 67.0 47.0 69.0 40.0 67.0 40.0 18 6 8
60 51 f 24 85 95 90.0 97.0 41.0 74.0 73.0 83.0 55.5 29 1 7
75 67 f 25 100 100 100.0 61.5 NaN 58.5 NaN 60.5 NaN 28 8 9

Of interest in this exercise in Boolean indexing is that we never had to write a loop. To produce our indices, we could have done the following.

In [16]:
# Initialize array of Boolean indices
inds = [False] * len(df)

# Iterate over the rows of the DataFrame to check if the row should be included
for i, r in df.iterrows():
    if r['age'] < 30 and r['gender'] == 'f' and r['percent correct'] > 85:
        inds[i] = True

# Make our seleciton with Boolean indexing
df.loc[inds, :]
Out[16]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
22 93 f 28 100 75 87.5 89.5 NaN 67.0 60.0 80.0 60.0 16 7 4
29 5 f 18 90 100 95.0 76.5 83.0 80.0 NaN 80.0 83.0 21 7 5
30 6 f 28 95 80 87.5 100.0 85.0 94.0 61.0 99.0 65.0 19 7 12
33 10 f 25 100 100 100.0 90.0 NaN 85.0 NaN 90.0 NaN 17 10 11
56 44 f 21 85 90 87.5 66.0 29.0 70.0 29.0 67.0 29.0 26 7 18
58 48 f 23 90 85 87.5 67.0 47.0 69.0 40.0 67.0 40.0 18 6 8
60 51 f 24 85 95 90.0 97.0 41.0 74.0 73.0 83.0 55.5 29 1 7
75 67 f 25 100 100 100.0 61.5 NaN 58.5 NaN 60.5 NaN 28 8 9

This feature, where the looping is done automatically on Pandas objects like DataFrames, is very powerful and saves us writing lots of lines of code. This example also showed how to use the iterrows() method of a DataFrame to iterate over the rows of a DataFrame. It is actually rare that you will need to do that, as we'll show next when computing with DataFrames.

Calculating with data frames

Recall that a subject is said to suffer from insomnia if he or she has an SCI of 16 or below. We might like to add a column to the DataFrame that specifies whether or not the subject suffers from insomnia. We can conveniently compute with columns. This is done elementwise.

In [17]:
df['sci'] <= 16
Out[17]:
0       True
1       True
2       True
3       True
4       True
5       True
6       True
7       True
8       True
9       True
10      True
11      True
12      True
13      True
14      True
15      True
16      True
17      True
18      True
19      True
20      True
21      True
22      True
23      True
24      True
25     False
26     False
27     False
28     False
29     False
       ...  
72     False
73     False
74     False
75     False
76     False
77     False
78     False
79     False
80     False
81     False
82     False
83     False
84     False
85     False
86     False
87     False
88     False
89     False
90     False
91     False
92     False
93     False
94     False
95     False
96     False
97     False
98     False
99     False
100    False
101    False
Name: sci, Length: 102, dtype: bool

This tells use how is an insomniac. We can simply add this back to the DataFrame.

In [18]:
# Add the column to the DataFrame
df['insomnia'] = df['sci'] <= 16

# Take a look
df.head()
Out[18]:
participant number gender age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess insomnia
0 8 f 39 65 80 72.5 91.0 90.0 93.0 83.5 93.0 90.0 9 13 2 True
1 16 m 42 90 90 90.0 75.5 55.5 70.5 50.0 75.0 50.0 4 11 7 True
2 18 f 31 90 95 92.5 89.5 90.0 86.0 81.0 89.0 88.0 10 9 3 True
3 22 f 35 100 75 87.5 89.5 NaN 71.0 80.0 88.0 80.0 13 8 20 True
4 27 f 74 60 65 62.5 68.5 49.0 61.0 49.0 65.0 49.0 13 9 12 True

Remember when we briefly say the np.mean() function? We can compute with that as well. Let's compare the mean percent correct for insomniacs versus those who are not.

In [19]:
print('Insomniacs:', np.mean(df.loc[df['insomnia'], 'percent correct']))
print('Control:   ', np.mean(df.loc[~df['insomnia'], 'percent correct']))
Insomniacs: 76.1
Control:    81.46103896103897

Notice that I used the ~ operator, which is a bit switcher. It changes all Trues to Falses and vice versa. In this case, it functions like NOT.

We will do a lot more computing with Pandas DataFrames in the next lessons. For our last demonstration in this lesson, we can quickly compute summary statistics about each column of a DataFrame using its describe() method.

In [20]:
df.describe()
Out[20]:
participant number age correct hit percentage correct reject percentage percent correct confidence when correct hit confidence incorrect hit confidence correct reject confidence incorrect reject confidence when correct confidence when incorrect sci psqi ess
count 102.000000 102.000000 102.000000 102.000000 102.000000 102.000000 84.000000 102.000000 93.000000 102.000000 99.000000 102.000000 102.000000 102.000000
mean 52.049020 37.921569 83.088235 77.205882 80.147059 74.990196 58.565476 71.137255 61.220430 74.642157 61.979798 22.245098 5.274510 7.294118
std 30.020909 14.029450 15.091210 17.569854 12.047881 14.165916 19.560653 14.987479 17.671283 13.619725 15.921670 7.547128 3.404007 4.426715
min 1.000000 16.000000 35.000000 20.000000 40.000000 29.500000 7.000000 19.000000 17.000000 24.000000 24.500000 0.000000 0.000000 0.000000
25% 26.250000 26.500000 75.000000 70.000000 72.500000 66.000000 46.375000 64.625000 50.000000 66.000000 51.000000 17.000000 3.000000 4.000000
50% 52.500000 36.500000 90.000000 80.000000 83.750000 75.000000 56.250000 71.250000 61.000000 75.750000 61.500000 23.500000 5.000000 7.000000
75% 77.750000 45.000000 95.000000 90.000000 87.500000 86.500000 73.500000 80.000000 74.000000 82.375000 73.000000 29.000000 7.000000 10.000000
max 103.000000 74.000000 100.000000 100.000000 100.000000 100.000000 92.000000 100.000000 100.000000 100.000000 100.000000 32.000000 15.000000 21.000000

This gives us a DataFrame with summary statistics. Note that in this DataFrame, the row indices are not integers, but are the names of the summary statistics.

Outputting a new CSV file

Now that we added the insomniac column, we might like to save our DataFrame as a new CSV that we can reload later. We use df.to_csv() for this with the index kwarg to ask Pandas not to explicitly write the indices to the file.

In [21]:
df.to_csv('gfmt_sleep_with_insomnia.csv', index=False)

Let's take a look at what this file looks like.

In [22]:
!head gfmt_sleep_with_insomnia.csv
participant number,gender,age,correct hit percentage,correct reject percentage,percent correct,confidence when correct hit,confidence incorrect hit,confidence correct reject,confidence incorrect reject,confidence when correct,confidence when incorrect,sci,psqi,ess,insomnia
8,f,39,65,80,72.5,91.0,90.0,93.0,83.5,93.0,90.0,9,13,2,True
16,m,42,90,90,90.0,75.5,55.5,70.5,50.0,75.0,50.0,4,11,7,True
18,f,31,90,95,92.5,89.5,90.0,86.0,81.0,89.0,88.0,10,9,3,True
22,f,35,100,75,87.5,89.5,,71.0,80.0,88.0,80.0,13,8,20,True
27,f,74,60,65,62.5,68.5,49.0,61.0,49.0,65.0,49.0,13,9,12,True
28,f,61,80,20,50.0,71.0,63.0,31.0,72.5,64.5,70.5,15,14,2,True
30,m,32,90,75,82.5,67.0,56.5,66.0,65.0,66.0,64.0,16,9,3,True
33,m,62,45,90,67.5,54.0,37.0,65.0,81.5,62.0,61.0,14,9,9,True
34,f,33,80,100,90.0,70.5,76.5,64.5,,68.0,76.5,14,12,10,True

Very nice. Notice that by default Pandas leave an empty field for NaNs, and we do not need the na_values kwarg when we load in this CSV file.